

Catalysis Today 137 (2008) 446-452

A comparative study of the selective oxidation of NH₃ to N₂ over gold, silver and copper catalysts and the effect of addition of Li₂O and CeO_x

M.J. Lippits, A.C. Gluhoi, B.E. Nieuwenhuys*

Leids Instituut voor chemisch onderzoek, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, The Netherlands

Available online 26 December 2007

Abstract

This paper describes the selective oxidation of ammonia into nitrogen over copper, silver and gold catalysts between room temperature and $400\,^{\circ}\text{C}$ using different NH_3/O_2 ratios. The effect of addition of CeO_x and Li_2O on the activity and selectivity is also discussed. The results show that copper and silver are very active and selective toward N_2 . However the multicomponent catalysts: $M/Li_2O/CeO_x/Al_2O_3$ (M: Au, Ag, Cu) perform the best. On all three metal containing catalysts the activity and selectivity is influenced by the particle size and the interaction between metal particles and support.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Gold; Silver; Copper; Ammonia oxidation; Selectivity; CeO_x; Li₂O

1. Introduction

The catalytic oxidation of ammonia is an important heterogeneous catalytic process and subject of many studies. The oxidation of ammonia can proceed via the following three principal reactions:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$
 (1)

$$4NH_3 + 4O_2 \rightarrow 2N_2O + 6H_2O$$
 (2)

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O \tag{3}$$

Reaction (1) is the first step in the so-called Ostwald process, where the formed NO reacts with O_2 to form NO_2 . The nitric acid produced in this way is used for the production of, among others, fertilizers. For this process high temperatures (800–900 °C) are required and a Pt/Rh gauze is used as catalyst. The N_2O which is formed in reaction (2) can be used as a precursor of atomic oxygen and may, therefore, potentially be used as selective oxidant of hydrocarbons [4,5]. Therefore, there is

recent interest in development of catalysts which convert NH_3 into N_2O with high selectivity. The process described in reaction (3) is potentially an efficient and simple method to abate ammonia pollution. It also may be used for the small scale production of pure nitrogen as a safety gas.

In literature, many papers dealing with this reaction over various kinds of noble metal and metal oxide catalysts can be found. The earlier work has been reviewed by II'Chenko et al. [6]. In more recent years various unsupported and supported catalysts have been extensively studied [7–10] for the selective oxidation of ammonia. A variety of metals including Ni, Mn, Fe, Cu, Pt, Ru and Ag supported on γ -Al₂O₃ have been tested mainly in the temperature range 200–600 °C. The maximum N₂ selectivity obtained, ranges between 82 and 98%. Copper catalysts are very selective to nitrogen [8] but only at elevated temperatures, while silver catalysts convert ammonia already at temperatures below 200 °C [7], but do not have a high selectivity to nitrogen.

In this study we prepared catalysts based on gold, silver and copper nano-particles on γ -Al₂O₃. In addition, the effect of adding Li₂O and CeO_xhas been investigated. CeO_x is an active oxide for the oxidation of CO to CO₂. Previously reported results show that ceria has a promoting effect on the

^{*} Corresponding author. Tel.: +31 71 5274545; fax: +31 71 5274451. E-mail address: b.nieuwe@chem.leidenuniv.nl (B.E. Nieuwenhuys).

activity of the Au/Al₂O₃ catalyst in CO oxidation [11–13]. It was argued that the active oxygen was supplied by the ceria, rather than from the gasphase. Moreover it was reported that the size of the ceria particles has a great influence on the activity of the catalyst [14]. A detailed study of Gluhoi et al. [3,15] on the effects of addition of (earth) alkali metals to a Au/Al₂O₃ catalyst revealed that the main role of the (earth) alkali metals is that of a structural promoter. It stabilizes the gold particles. It was also found that the combination CeO_r + Li₂O acts as a very efficient promoter for Au based catalysts in many reactions, such as oxidation of hydrocarbons, CO and NH₃ [1-3] or reduction of NO by H₂ [16]. Comparable results have been found for copper and silver based catalysts [17]. The results of the gold catalysts in NH₃ oxidation have already been published in other papers of our group [1–3].

2. Experimental

2.1. Catalyst preparation

Mixed oxides of ceria (denoted as CeO_x) and/or Li₂O with alumina were prepared by pore volume impregnation of γ-Al₂O₃ (Engelhard) with the corresponding nitrates. After calcination at 350 °C these oxides were used as supports for the Au, Cu or Ag based catalysts. The prepared mixed oxides have an intended atomic ratio Ce/Al and Li/Al of 1/15. The copper, silver and gold catalysts were prepared via homogeneous deposition precipitation using urea as precipitating agent [18]. An appropriate amount of HAuCl₄· 3aq (99.999%, Aldrich chemicals) or CuNO₃· 3aq was added to a suspension of purified water containing γ -Al₂O₃ or the mixed oxide. The intended M/Al atomic ratio was 1/75 (M =Cu, Ag or Au). This ratio of 1:75 is equal to 0.53 at% M and resulted in 5 wt% for gold, 2.5 wt% for silver and 1.5 wt% for copper. The temperature was kept at 80 °C allowing urea (p.a., Acros) to decompose ensuring a slow increase of pH. When a pH of around 8-8.5 was reached the slurry was filtrated and washed thoroughly with water and dried overnight at 80 °C. Because urea and silver atoms can form a soluble Ag[NH₃]₂⁺ complex a large surplus of silver was needed to deposit enough silver on the Al₂O₃. The catalysts were thoroughly ground to ensure that the macroscopic particle size was around 200 µm for all the catalysts used in this study. Prior to the activity measurement all catalysts were reduced at 400 °C with hydrogen for 2 h.

2.2. Catalyst characterization

The metal loading was verified by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) using a Varian Vista-MPX. For that purpose a small fraction of the catalyst was dissolved in diluted aqua regia. X-ray diffraction measurements were done using a Philips Goniometer PW 1050/25 diffractometer equipped with a PW Cu 2103/00 X-ray tube operating at 50 kV and 40 mA. The average particle size was estimated from XRD line broadening after subtraction of the

signal from the corresponding support by using the Scherrer equation [19].

2.3. Activity measurements

Activity tests of the catalysts were performed in a micro reactor system. The amount of catalyst used was 200 mg for the $Au/\gamma-Al_2O_3$, $Ag/\gamma-Al_2O_3$ and $Cu/\gamma-Al_2O_3$ catalysts. When the catalyst contained CeO_x and/or Li₂O the amount of catalyst was adjusted in such a way that the amount of metal atoms (Au, Ag or Cu) was similar for all the catalysts with and without additives. Four different gas mixtures of NH₃ and oxygen were used. Both gases were 4 vol% balanced in argon. The different NH₃:O₂ ratios used were 1:1, 1:5 1:10 and 1:25. Typically a total gas flow of 40 ml/min (GHSV $\approx 2500 \text{ h}^{-1}$) was maintained. The effluent stream was analyzed on-line by a quadrupole mass spectrometer (Balzers). The experiments were carried out at a pressure of 1 bar. Each measurement consists of at least four temperature programmed cycles of heating and cooling, with a rate of 4 °C/min. Unless otherwise stated the results of the second cooling stage are depicted in the figures. The only hydrogen containing product that was detected was water.

3. Results

3.1. Characterization

The average particle size of the fresh catalysts could not be determined by XRD because the size of the particles was below the detection limit of the XRD (3 nm). The results of the characterization of the catalysts after the reaction are shown in Table 1. The catalysts without additives contain small particles of 3–4 nm. With ceria and Li₂O added the average particle size is lower than the detection limit (3 nm). HRTEM data of comparable catalysts have been published in earlier papers of our group [3,15,20]. The actual metal loading was almost equal to the intended metal loading. In addition, we have checked the catalysts for the Li and Ce contents with ICP-OES. These measurements showed that the appropriate amount of Li and/or Ce was deposited on the catalysts.

Table 1 Catalyst characterization by ICP and XRD

Catalyst	Metal loading (wt%)	Average particle size (nm)
Au/Al ₂ O ₃	4.8 ± 0.1	4.5±0.1
Au/CeO _x /Al ₂ O ₃	4.0 ± 0.2	3.3 ± 0.3
Au/Li ₂ O/Al ₂ O ₃	4.5 ± 0.3	< 3.0
Au/CeO _x /Li ₂ O/Al ₂ O ₃	4.0 ± 0.2	< 3.0
Ag/Al ₂ O ₃	2.2 ± 0.1	4.9 ± 0.2
Ag/CeO _x /Al ₂ O ₃	1.8 ± 0.1	3.9 ± 0.2
Ag/Li ₂ O/Al ₂ O ₃	2.2 ± 0.1	< 3.0
Ag/CeO _x /Li ₂ O/Al ₂ O ₃	1.6 ± 0.1	< 3.0
Cu/Al ₂ O ₃	1.3 ± 0.1	3.6 ± 0.3
Cu/CeO _x /Al ₂ O ₃	1.0 ± 0.1	< 3.0
Cu/Li ₂ O/Al ₂ O ₃	1.4 ± 0.1	< 3.0
Cu/CeO _x /Li ₂ O/Al ₂ O ₃	1.0 ± 0.1	<3.0

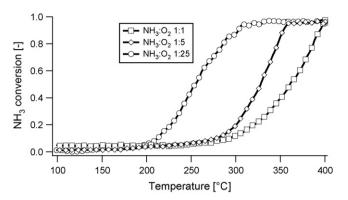


Fig. 1. NH₃ conversion on Cu/Al₂O₃ catalyst for different NH₃:O₂ ratios.

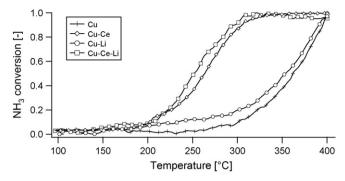


Fig. 3. Effect of addition of Li₂O, CeO_x and Li₂O + CeO_x on the NH₃ conversion over Cu/Al₂O₃ catalysts, NH₃: $O_2 = 1$.

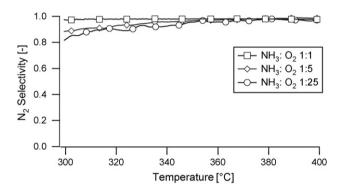


Fig. 2. N₂ selectivity of the Cu/Al₂O₃ catalyst for different NH₃:O₂ ratios.

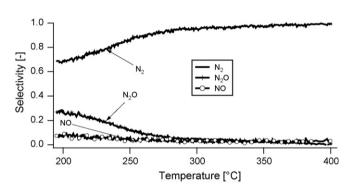


Fig. 4. Selectivity of the $Cu/Li_2O/CeO_x/Al_2O_3$ catalyst, NH_3 : $O_2 = 1$.

3.2. Copper catalysts

The used supports Al₂O₃, Li₂O/Al₂O₃, CeO_x/Al₂O₃ and Li₂O/CeO₂/Al₂O₃ without noble metal are inactive for the selective oxidation of ammonia at temperatures below 400 °C. The results of the ammonia oxidation over copper catalysts with three different NH₃:O₂ ratios are presented in Fig. 1 and 2. In agreement with literature [8] the selectivity to N_2 on these copper catalyst is very high, almost 100%. The NH₃ conversion starts at 300 °C with a NH₃:O₂ ratio of 1:1. When the O₂:NH₃ ratio is increased to 5, the temperature onset is not changed but full conversion is already reached at 350 °C. When the oxygen content is further increased to a ratio of NH₃: $O_2 = 1:25$ the onset temperature is lowered to 200 °C and the temperature of maximum conversion to 300 °C. The results of addition of ceria and Li₂O are depicted in Fig. 3. Addition of Li₂O results is a small improvement of the performance of the Cu/Al₂O₃ catalyst. Addition of CeO_rhas a more pronounced effect. The temperature onset of NH₃ conversion is lowered from 300 °C towards 225 °C. If also Li₂O is added to the Cu/CeO_x/Al₂O₃ catalyst again a small improvement is observed in the activity of the catalyst. Fig. 4 shows the selectivity of the Cu/Li₂O/ CeO_y/Al₂O₃ catalyst with a NH₃:O₂ ratio of 1:1. Only at temperatures below 200-250 °C some N₂O is formed. Above that temperature only N_2 is formed.

3.3. Silver catalysts

The NH₃ conversion over the Ag/Al₂O₃ catalysts is shown in Fig. 5. At a NH₃/O₂ ratio of 1, the onset temperature of NH₃ conversion is 300 °C. Increasing the O₂/NH₃ ratio results in only a slightly lower onset temperature. In the temperature region of 300–400 °C mainly N₂ is formed as can be seen in Fig. 6. With the NH₃/O₂ ratios of 1:1 and 1:5 the selectivity starts from 90% at 300 °C and increases to 100% at 400 °C. When the amount of oxygen is further increased to a ratio of

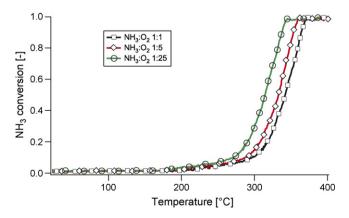


Fig. 5. NH₃ conversion of Ag/Al₂O₃ catalyst for different NH₃:O₂ ratios.

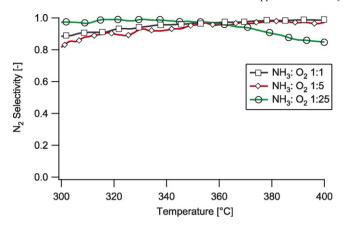


Fig. 6. N₂ selectivity on the Ag/Al₂O₃ catalyst for different NH₃:O₂ ratios.

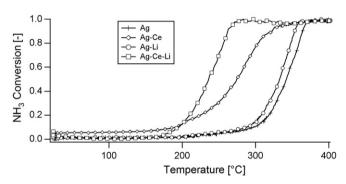


Fig. 7. Effect of addition of Li_2O , CeO_x and Li_2O + CeO_x on the NH_3 conversion of Ag/Al_2O_3 catalysts, NH_3 : $O_2=1$.

NH₃: $O_2 = 1:25$ the selectivity at 300 °C is increased to 98%. At temperatures above 360 °C the selectivity drops towards 80%. In this temperature region some N₂O is formed. The results of addition of CeO_x and Li₂O are shown in Fig. 7. Similar to the copper catalysts, addition of Li₂O has a very small effect on the activity of the Ag based catalyst, while the selectivity was not affected by addition of Li₂O. Addition of CeO_x results in a shift of the onset temperature from 300 °C to 200 °C. Again no effect on the selectivity is detected. When Li₂O is added to the Ag/CeO_x/Al₂O₃ catalyst a further improvement on the activity is obtained. The onset temperature remains about 200 °C. The temperature where the conversion reaches maximum is decreased from 340 °C to 260 °C. The

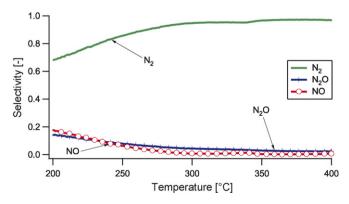


Fig. 8. Selectivity of the $Ag/Li_2O/CeO_x/Al_2O_3$ catalyst, NH_3 : $O_2 = 1$.

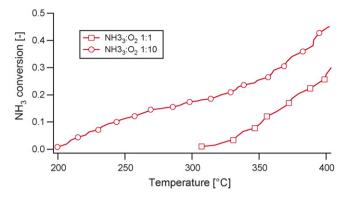


Fig. 9. NH₃ conversion of Au/Al₂O₃ catalyst for different NH₃:O₂ ratios [3].

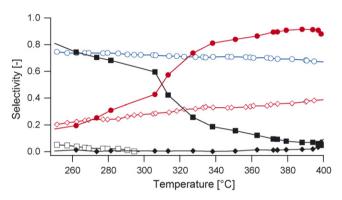


Fig. 10. Product distribution vs. temperature during NH₃ oxidation over Au/ Al₂O₃ for two different reactant ratios. Full symbols: NH₃: $O_2 = 1:1$, open symbols: NH₃: $O_2 = 1:10$. Selectivity to N₂O (\spadesuit), selectivity to N₂ (\bullet), selectivity to NO (\blacksquare) [3].

selectivity of this catalyst is shown in Fig. 8. Below $300\,^{\circ}\mathrm{C}$ small amounts of NO and $N_2\mathrm{O}$ are formed, but the main product is N_2 . The selectivity increases with increasing temperature and reaches 100% at $300\,^{\circ}\mathrm{C}$.

3.4. Gold catalysts

Figs. 9 and 10 show that over gold based catalysts, at a NH₃/ O₂ ratio of 1 a maximum conversion of 30% is obtained at 400 °C with a selectivity to N₂ above 80%. The NH₃ conversion increases with increasing O₂ in the feed. For a O₂/NH₃ ratio of 10 the onset temperature is 200 °C and a conversion of 45% is reached at 400 °C. At 200 °C the selectivity towards N₂ is about 78% and slowly decreases to 65% as the temperature is increased to 400 °C. This decrease in N₂ selectivity is due to an increase in the N₂O selectivity. Fig. 11 compares the catalytic activity of the gold based catalysts when the promoters are also present. Clearly the Au/CeO_x/Li₂O/Al₂O₃ catalyst showed the best activity [3]. The catalyst is already active at 230 °C. In contrast to the copper and silver catalysts the addition of Li₂O to the Au/Al₂O₃ and Au/CeO_x/Al₂O₃ catalysts results in a large improvement of the activity. If Fig. 12 is compared to Fig. 10 it can be seen that the addition of ceria has a significant effect on the selectivity. At temperatures below 280 °C mainly N₂ is formed. At higher temperatures the main product becomes N₂O. The Au/CeO_x/Li₂O/Al₂O₃ catalyst shows an increase in N₂ selectivity at the expense of selectivity to N₂O above

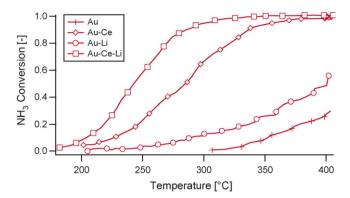


Fig. 11. Effect of addition of Li_2O , CeO_x and $Li_2O + CeO_x$ on the NH_3 conversion of Au/Al_2O_3 catalysts [3].

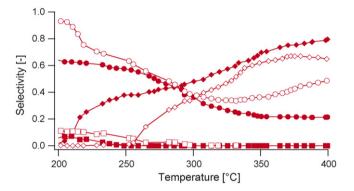


Fig. 12. Product distribution vs. temperature during NH₃ oxidation over Au/ CeO_x/Al_2O_3 (full symbols) and Au/Li₂O/CeO_x/Al₂O₃ (open symbols): selectivity to N₂O (\spadesuit), selectivity to N₂ (\bullet), selectivity to NO (\blacksquare) [3].

380 °C. If also Li₂O is added no increase of N₂ production, in this temperature region, is observed.

4. Discussion

4.1. Copper catalyst

An extensive study concerning ammonia oxidation on Cu/ Al₂O₃ catalyst was reported by Friedman et al. [21] in 1978. Together with the results of another group [22] the authors came to the conclusion that at low copper loadings and calcination temperatures below 500 °C the copper mainly exists as surface spinels (CuAl₂O₄). This was confirmed by results of Gang et al. [8,23]. They could not detect copper particles with HRTEM on catalysts with loadings of 10% or lower. With higher loading CuO particles were detected. Because the catalysts with lower loading were more active they concluded that the CuAl₂O₄ particles were more active than the CuO phase. Based on TPD measurements they also concluded that both surface and lattice oxygen can react with NH₃ to produce N₂. They stated that the first mentioned O-species was the most active one. Increasing the O₂/NH₃ ratio does increase the conversion but decreases the selectivity to N₂. Using a different preparation method and reduction in hydrogen instead of calcination in air we were able to produce small metallic copper particles at low loadings before reaction. These metallic particles are readily oxidized to

copper oxide especially in oxygen rich reaction mixtures. The 1.5 wt% Cu/Al₂O₃ catalyst showed a similar activity as the 5 wt% catalyst of Gang et al. [8] and almost 100% selectivity to N₂. In agreement with that study increasing the O₂/NH₃ ratio enhanced the conversion. If CeO_x is added a great improvement in activity is obtained without loss in selectivity to N₂. This improvement can be explained by giving ceria a role as cocatalyst which consists in providing active oxygen to the active copper species. In the preparation of the catalyst the cerium oxide was deposited first and the copper was deposited afterwards. In this case it is not likely that surface spinels (CuAl₂O₄) were formed. CuO-CeO species may be formed but according to [24] those species are only active above 300 °C in ammonia oxidation. Therefore, it is not likely that these species cause the improved activity of the Cu/CeO_x/Al₂O₃ catalyst. Possibly the reaction takes place at the interface of the copper nanoparticles and the ceria.

4.2. Silver catalysts

The activity of silver in the selective oxidation of ammonia has been previously studied by Gang et al. [7,23]. They compared silver powder with Ag/SiO₂ and Ag/Al₂O₃. The silver powder was very active, similar to Ag/SiO₂. These catalysts were superior to noble metal catalysts, such as Pt and Ir at temperatures below 200 °C, but were not very selective at low temperatures and reached a maximum selectivity to N2of around 75% at 300 °C. The Ag/Al₂O₃ catalyst showed a better selectivity of around 80% to N2 at low temperatures. At temperatures above 300 °C the selectivity dropped due to the large NO production. They suggested a mechanism which consisted of two steps. The first one is a fast oxidation of NH₃ to NO on the silver particles. The second step is a reduction of the NO to N2 or N2O. They suggested that the second step was enhanced by the interaction between silver and the alumina, resulting in an improved selectivity to N₂. The possible effect of the difference in particle size of the Ag/Al₂O₃ (8 nm) and Ag/ SiO₂ (24 nm) catalyst has not been discussed in that paper. The silver catalysts we studied have a smaller Ag particle size (Table 1). With these smaller particles no activity was found below 250 °C. With all three O₂/NH₃ratios the conversion is similar. It is well known that atomically adsorbed oxygen desorbs at around 280 °C from a silver surface [25]. Possibly the ammonia oxidation is hindered by these atomically adsorbed oxygen. In the temperature region that the silver catalyst is active in NH₃ oxidation a very high selectivity towards N₂ is obtained. The chemical behavior is very different from the catalysts studied by Gang et al. [23]. Besides the differences in activity they found a large effect of the O₂/ NH₃ratio. It might be that the mechanism on the very small silver particles is different. Li₂O can act as a structural promoter [15–17]. It stabilizes the small silver particles which results in smaller particles (Table 1). As addition of Li₂O shows only a small effect on the activity and no effect on the selectivity, it is unlikely that Li₂O influences the reaction chemistry. Addition of CeO_x or the combination of CeO_x and Li₂O does greatly influence the activity but not the selectivity. As the oxygen

storage capability in oxidation reactions of ceria is well known, it is possible that the promoting role of CeO_x is related to an improved supply of active oxygen to the silver particles. Clearly, as Gang et al. [7] stated, the interaction between silver and the support has a great influence on the ammonia oxidation. But also the particle size should be taken into account. The smaller the particles the higher the selectivity to N_2 . This suggests a model in which the reactions at the interface of silver with the ceria support is very important for high selectivity to nitrogen.

4.3. Gold catalysts

When the oxygen content of the gas feed is increased, the performance of the Au/Al₂O₃ catalysts is improved in terms of conversion. A higher O2 content does not influence the adsorption of the NH₃[1]. Hence, probably the surface is mainly covered with NH₃ and the reaction is very dependent on the availability of oxygen atoms. This is probably also the reason for the beneficial effect of addition of ceria, which is known to be able to provide and store oxygen. When Li₂O is added an improvement of activity is measured for the gold catalysts whereas on the copper and silver catalysts hardly any difference was noted. A possible role of the Li₂O is decreasing the surface acidity of the γ -Al₂O₃. It is expected that on a less acidic surface the NH₃ adsorption is hindered, which can give room for more oxygen adsorption on the support. This is supported by the observation that a post treatment of NaOH increases the activity of several catalysts in this reaction [7,8]. The mechanistic route to N2, NO and N2O is considered in literature to proceed via a sequential NH3dissociation (hydrogen abstraction) [10,26]. Amblard et al. [10] stated a mechanism in which surface NO_x can be reduced by surface NH_x. They considered the activation of surface NH_x to be the rate limiting step. As the addition of CeO_x to the Au/Al₂O₃ catalyst affects besides the activity also the selectivity of the catalyst, it is possible that CeO_x also affects the activation of surface NH_r. In an earlier paper [1] it is shown with FTIR measurements that gold seems to enhance the H-abstraction of NH₃ and from the observation that the selectivity of the ammonia oxidation is dependent on the CeO_x additive, it can be concluded that all components of the catalysts have an influence on the selectivity, suggesting that the chemical reactions may take place at the metal-support interface.

4.4. Comparison of the copper, silver and gold catalysts

If the activity and selectivity of the silver and copper catalysts are compared to the results of the gold catalysts published earlier by our group [1–3], some similarities are observed. For all three catalysts the addition of CeO_x or CeO_x + Li_2O is beneficial for the activity. In all cases the multicomponent catalyst with both oxides is the most active one. Possibly, the metal oxides have an important role in the ammonia oxidation chemistry. The copper, silver and gold metals are needed to create active catalysts as the supports only are inactive at temperatures below $400\,^{\circ}C$ as shown in the

present study and in [1]. These results may suggest that for all three metals used the reaction takes place at the metal-support interface. In addition for all three metals (copper, silver and gold) the size of the particles is important. For gold the particle size is crucial for the high oxidation activity [27]. The catalysts with copper nanoparticles also show an improved activity compared to literature data in which large Cu particles (10 nm) have been used [8,23]. For the silver catalysts the selectivity is improved if smaller particles are used. In terms of selectivity, copper and silver catalysts differ from the gold catalysts. Addition of ceria to the Au/Al₂O₃ influences the selectivity, whereas the selectivity of copper and silver containing catalysts was not affected by CeO_x. A study by Lin et al. [1] showed that the catalytic ammonia oxidation activity of gold catalysts does not strongly depend on the average gold particle size, but is strongly influenced by the nature of the additive, which suggests a certain metal-support interaction which not only influences the activity but also the selectivity. Possibly, both the gold and ceria play an active role in the NO and N2O production. On the silver and copper based catalysts the additive ceria only influences the activity but not the selectivity.

5. Conclusions

Based on the results presented above, it is concluded that silver and copper catalysts are very active and selective in the selective oxidation of ammonia to nitrogen. For both metals the interaction or nature of the support greatly influences the activity. Addition of Li_2O results in smaller particles for silver and copper, as was reported before for gold based catalysts. Addition of CeO_x increases the activity of the silver, gold and copper catalysts and for the gold catalysts influences also the selectivity. The particle size of the copper, silver and gold is very important for high activity and selectivity.

References

- [1] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90 (2004) 3.
- [2] A.C. Gluhoi, S.D. Lin, B.E. Nieuwenhuys, Catal. Today 90 (2004) 175.
- [3] A.C. Gluhoi, Fundamental studies focused on understanding of gold catalysis, Ph.D. thesis, Leiden University, 2005, ISBN: 90–9019950-0.
- [4] A. Ivanov, V. Chernyavsky, M. Cross, A. Kharitonov, A. Uriate, G. Panov, Appl. Catal. A 249 (2003) 327.
- [5] A. Orita, H. Kondoh, H. Nozoye, J. Catal. 177 (1998) 217.
- [6] N. II'chenko, Russian Chem. Rev. 45 (12) (1976) 1119.
- [7] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, Appl. Catal. B 40 (2003) 101.
- [8] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, J. Catal. 186 (1999) 100.
- [9] R.Q. Long, R.T. Yang, J. Catal. 207 (2002) 158.
- [10] M. Amblard, R. Burch, B.L.W. Southward, Catal. Today 59 (2000) 365.
- [11] M.A.P. Dekkers, M.J. Lippits, B.E. Nieuwenhuys, Catal. Today 54 (1999)
- [12] A.C. Gluhoi, H.S. Vreeburg, J.W. Bakker, B.E. Nieuwenhuys, Appl. Catal. A 201 (2005) 145.
- [13] F. Arena, P. Famulari, G. Trunfio, G. Bonura, F. Frusteri, L. Spadaro, Appl. Catal. B 66 (2006) 81.
- [14] S. Carrettin, P. Concepcion, A. Corma, J.M.L. Nieto, V.F. Puntes, Angew. Chem. Int. Ed. (2004) 2538.
- [15] A.C. Gluhoi, N. Bogdanchikova, B.E. Nieuwenhuys, J. Catal. 232 (2005) 96.

- [16] A.C. Gluhoi, M.A.P. Dekkers, B.E. Nieuwenhuys, J. Catal. 219 (2003)
- [17] M.J. Lippits, A.C. Gluhoi, B.E. Nieuwenhuys, Top. Catal. 44 (2007) 159.
- [18] J.W. Geus, Dutch Patent Appl. 6 (1967) 705.
- [19] P. Scherrer, Nachr. K. Ges. Wiss. (1918) 98.
- [20] A.C. Gluhoi, X. Tang, P. Marginean, B.E. Nieuwenhuys, Top. Catal. 39 (2006) 101.
- [21] R.M. Friedman, J.J. Freeman, F.W. Lytle, J. Catal. 55 (1978) 10.
- [22] P.W. Park, J.S. Ledford, Appl. Catal. B 15 (1998) 221.

- [23] L. Gang, Catalytic oxidation of ammonia to nitrogen, Ph.D. thesis, Technische Universiteit Einhoven, 2002.
- [24] J.-C. Lou, C.-M. Hung, S.-F. Yang, J. Air Waste Manage. Assoc. 54 (2004)
- [25] C.T. Campbell, Surf. Sci. 157 (1985) 43.
- [26] G. Ramis, L. Yi, G. Busca, M. Turco, E. Kotur, W.J. Willey, J. Catal. 157 (1995) 523.
- [27] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. Genet, B. Delmon, J. Catal. 144 (1993) 175.